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Abstract

We study two-sided membership filters, a natural generalization of classical Bloom-like
filters that allows both false positive and false negative errors. Two-sided filters are motivated
by a number of applications, and they can potentially use less space by tolerating both types
of errors.

We establish the fundamental space lower bound for two-sided filters: any filter achieving
false positive rate εP and false negative rate εN must use at least DKL(1− εN∥εP ) bits per
key, the binary Kullback-Leibler divergence between Bern(1−εN ) and Bern(εP ). This bound
generalizes the classical log(1/εP ) lower bound for one-sided filters and provides a natural
and complete characterization of the space-error trade-off.

We also present a simple but inefficient construction that achieves this lower bound,
demonstrating its tightness.
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1 Introduction

Approximate membership query filters (or simply filters), such as Bloom filters [6], have achieved
tremendous success in many applications including networking [9], databases, distributed sys-
tems [31], biology [24], and others [23]. These data structures can “store” a set of keys S in
some universe U , using space linear in |S|, regardless of the size of U . Information-theoretically,
storing such a set of size n takes log

(|U |
n

)1 bits, which is prohibitively large as filters are typically
used when |U | ≫ n. Hence this compactness, while impressive, must come with some inaccu-
racies. Typically, this inaccuracy is characterized by a small false positive rate (FPR) ε of the
user’s choice, such that an ε fraction of the non-keys U \ S will be recognized as keys by the
filter. Meanwhile, the false negative rate (FNR) is usually guaranteed at zero.

Since Bloom’s proposal of the first filter in 1970, various works in data structure design have
been devoted to designing filters that are space-optimal, computationally cheap, and feature-
rich (allowing for deletion, for instance). Many filter designs since then, including variants of
the quotient [3, 2, 28] and cuckoo [16, 14, 8, 32] filters, as well as other structures for storing
(multi)set of fingerprints of the keys [26, 5, 15, 4], can achieve space usage O(n)-close to the
n log 1

ε bits lower bound, shown by Carter et al. [10]. Some other designs can even achieve
this lower bound up to o(n) extra bits [12, 29] by considering the closely related retrieval data
structures (defined in section 2.1).

It seems clear then that log 1
ε characterizes the fundamental trade-off between per-element

space and error for filters. However, as the term “approximate membership” suggests, these
filters with one-sided errors are special cases of a more general class of data structures: those
which store S with both false negatives and false positives, which can potentially use even less
space than the classical filters. Despite being a natural generalization motivated by a number
of practical applications, there has been no theoretical characterization of the trade-off between
space, FPR, and FNR for two-sided filters 2. This leads to the following natural question:

What is the minimum space required for a two-sided filter that stores a set of size n with FPR
of εP and FNR of εN , independent of the universe size?

1.1 Our results

Our first result is a space lower bound for data structures storing n keys in a universe of size
u, up to FPR of εP and FNR of εN , for the case where key density n/u is fixed. This lower
bound applies not only to filters (which operate regardless of the universe size), but also for
other approximate membership structures tailor made for known universes:

Theorem 1. For any fixed p = n
u , as n → ∞, any data structure storing key set of size n with

FPR of εP ∈ (0, 1) and FNR of εN ∈ (0, 1− εP ) must use at least

DKL(1− εN∥εP )−
(1− εN − εP )

2

2εP (1− εP ) ln 2
· p+O(p2)

bits of space per key. Here, DKL(q1∥q2) denotes the binary Kullback-Leibler divergence of a
Bern(q1) distribution from a Bern(q2) distribution:

DKL(q1∥q2) = q1 log
q1
q2

+ (1− q1) log
1− q1
1− q2

.

For two-sided filters which are universe-independent, by considering the usual setting where
u ≫ n, we immediately obtain the following corollary:

1All logarithms are base-2 in this paper.
2From now on, we use two-sided filters to denote such structures with two-sided errors, and the classical filters

will be referred to as one-sided filters.
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Corollary 2. Any two-sided filter storing n keys with FPR of εP ∈ (0, 1) and FNR of εN ∈
(0, 1− εP ) must use at least DKL(1− εN∥εP ) bits of space per key.

This lower bound generalizes the one-sided lower bound log 1
εP

, as DKL(1∥εP ) = log 1
εP

for
any εP ∈ (0, 1). Moreover, this value is intuitive from a statistical perspective: by drawing n
samples from a large population with positive rate εP , the probability of obtaining positive rate
at least 1 − εN on the samples is 2−n(DKL(1−εN∥εP )+o(1)). The “amount of information” needed
to describe such a sample is therefore around n ·DKL(1− εN∥εP ) bits.

The proof for Theorem 1 is based on lossy data compression, formalizing the above intuition
and extending the idea of [19]. Some technicalities arise from the fact that the membership
information (whether x ∈ S or not) for each x ∈ U is dependent on the membership information
of the rest of U . To obtain a rigorous lower bound, we apply the law of large numbers and prove
a generalized version of the rate-distortion theorem for two error metrics.

It’s worth noting that our result also refines an early result [27] for “lossy dictionaries”, a
combination of two-sided filter and retrieval structure. In particular, for two-sided filters, the
authors gave a lower bound of

(1− εN ) log
1

εP + p
−Θ(1)

=(1− εN ) log
1

εP
−Θ(1)− 1− εN

εP ln 2
· p+O

(
p2
)

bits per element. Theorem 1 characterizes the Θ(n) term and refines the dependency on p. Their
result was based on counting arguments similar to [10], which could explain the discrepancy.

Finally, to complement the lower bound, we construct a conceptually simple two-sided filter
that achieves the space lower bound, thereby demonstrating its tightness:

Theorem 3. There exists a two-sided filter with space usage n ·DKL(1− εN∥εP )+ o(n) bits per
key, for any εP ∈ (0, 1) and εN ∈ (0, 1− εP ).

We note that this construction is not practical. In fact, it is unlikely that we can construct this
filter in polynomial time due to a reduction to the learning parity with noise (LPN) problem [7].
It is open whether we can construct such a filter in polynomial time, or if there is some inherent
hardness in the problem.

1.2 Why introduce false negatives?

Despite their success, one-sided filters sometimes have limited performance and versatility due
to the stringent no-false-negative requirement. As pointed out by Hurley and Waldvogel [19],
certain filter applications in networking [9] would tolerate or even prefer false negatives. An
example is set difference reconciliation, where Bob sends a filter of his local storage SB to Alice,
such that Alice can compute SA \ SB and update Bob on what he does not have. Here, a
false negative in Bob’s filter only causes a minor overhead, yet a false positive will lead to
synchronization errors. For more examples, see table 1.

Moreover, even in traditionally FPR-heavy tasks, the idea of introducing FNR to further
reduce FPR is often employed, as exemplified by designs such as the retouched Bloom filter [13],
generalized Bloom filter [21], and autoscaling Bloom filter [20]. In the Bloom paradox [30], the
authors also discussed selective insertion and selective query as a means to reduce FPR and
introduce FNR, in order to minimize the overall cost. All these approaches can be viewed as
heuristics for the FPR-FNR trade-off for a given space usage, and it is therefore of great interest
to study the fundamental limit of this approach, as well as methods that can achieve this limit.

The connections to retrieval and lossy dictionary structures further motivate our investigation
into two-sided filters, as these related fields have demonstrated the value of allowing controlled
information loss for improved space efficiency and performance. Understanding the fundamental
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Application area Necessity of one-sided error
Distributed caching No

Object location in P2P systems No
Approximate set reconciliation False negative preferred

Resource routing No
Loop detection False negative preferred
Flow detection Yes

Multicast Yes
Hyphenation Exceptions Yes

Set intersection Yes
Differential files Yes

Table 1: A summary of network applications of filters with the role of false negatives highlighted.
This table is taken from Hurley and Waldvogel [19].

limits of two-sided filters thus contributes not only to filter design but also to the broader
understanding of space-efficient data structures with approximate semantics.

We discuss other related works in section 2.4.

2 Preliminaries

2.1 Approximate Membership, Filters, and Retrieval

In this paper, we use the generic term “approximate membership structure” to denote any data
structure that stores a set of keys with both false positive and false negative which operates for
a fixed, known universe U . One can think of U as the set [2w], where w is the word length in a
RAM model, a standard assumption in the literature [26]. This structure behaves significantly
different from the filters we define below. Our main result is in the context of two-sided filters
defined later, but our methods in theorem 1 come from the study of such structures [19].

Definition 4 (Approximate Membership Structure). A approximate membership structure
M is a probabilistic data structure that stores a set of keys with both false positive and false
negative errors. M implements the following two operations:

1. On input εP , εN , key set S, and universe U , M is initialized by storing an internal state
of some LM(|S|, |U |, εP , εN ) bits.

2. On query x ∈ U , (by an abuse of notation) M outputs some M(x) ∈ {0, 1}. The query
answer should satisfy: {

Px∼Unif(U\S)[M(x) = 1] ≤ εP ,

Px∼Unif(S)[M(x) = 0] ≤ εN ,

where the probabilities are taken over the random oracle functions used in both initializa-
tion and query.

Now we define filters. To capture the notion that filters operate regardless of the universe size,
we require the space usage to be independent of the universe size, assuming access to random
oracles functions on the universe U . This is an idealized version of hash functions, and most
filter structures (including Bloom, Cuckoo, Quotient, etc.) can indeed be implemented without
access to U under this assumption. This also allows us to separate the information-theoretic
core of the problem from practical hash function designs.

Definition 5 (Two-Sided Filter). A two-sided filter F is a probabilistic data structure with
access to binary random oracle functions O1, O2, . . . : U → {0, 1}. F implements the following
two operations using these random oracle functions:
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1. On input εP , εN , and key set S, F is initialized by storing an internal state of some
LF (|S|, εP , εN ) bits.

2. On query x ∈ U , (by an abuse of notation) F outputs some F(x) ∈ {0, 1}. The query
answer should satisfy: {

Px∼Unif(U\S)[F(x) = 1] ≤ εP ,

Px∼Unif(S)[F(x) = 0] ≤ εN ,

where the probabilities are taken over the random oracle functions used in both initializa-
tion and query.

We call F one-sided if it has εN = 0. We sometimes use “error rates (εP , εN )” to denote an
FPR of εP and FNR of εN .

For completeness, we also define the closely related retrieval data structure [12, 29]:

Definition 6 (Retrieval). A retrieval data structure R is a compact dictionary-like structure
that associates a k-bit value v1, . . . , vn with each of the n keys in {x1, . . . , xn} = S ⊆ U . Upon
a query x ∈ U ,

• If x = xi ∈ S is a key, then R must return the correct value vi.

• If x ∈ U \ S is a non-key, then R can return an arbitrary value in {0, 1}k.

This data structure has space lower bound nk, since it can easily implement a one-sided filter
with FPR of 2−k via the following procedure [12][29]:

1. Set the value of key xi ∈ S to be vi = f(xi), for random oracle “fingerprint” function
f : U → {0, 1}k.

2. Construct retrieval structure R which stores value vi for each key xi.

3. When queried a key x ∈ U , the filter queries R with the same x and obtains value v. Filter
returns 1 iff f(x) = v.

2.2 Weak vs strong space optimality

Given the space lower bound, we want to distinguish two types of filters that are often referred
to as “optimal” in the literature:

Definition 7. Membership filter F is strongly optimal if for any pair of fixed εP , εN ,

1

n
LF (n, εP , εN ) = DKL(1− εN∥εP ) + o(1), as n → ∞.

Meanwhile, F is weakly optimal if for any εP , εN ,

1

n
LF (n, εP , εN ) ≤ DKL(1− εN∥εP ) +O(1), as n → ∞.

Most practical filters claiming to achieve optimality (see ??) are only weakly optimal, even
as their load approaches 1 and becomes practically infeasible. This is for good reason: any one-
sided filter supporting insertion must have an O(n) multiplicative overhead, and thus cannot be
strongly optimal [22]. Moreover, εP is often set to be small in practice, and by taking εP → 0
and εN constant, the DKL(1 − εN∥εP ) term dominates, and weakly optimal filters will have a
negligible multiplicative overhead in this limit. It’s when εP +εN ≈ 1 that the strong optimality
becomes significantly better.

In this paper, we focus solely on strongly optimal two-sided membership filters, as we are
interested in the fundamental space-error trade-off. Another reason is the following simple
baseline is, in fact, already weakly optimal.
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2.3 Selective insertion: a baseline

Selective insertion is a naturally arising two-sided filter proposed as a solution to the “Bloom
paradox” [30]. Essentially, we use a one-sided filter with FPR of εP to store only 1− εN portion
of the keys S. This structure clearly achieves the desired error levels, and its space function is:

(1− εN )n log
1

εP
= n(DKL(1− εN∥εP ) +H(εN ) + εN log(1− εP )︸ ︷︷ ︸

overhead.

)

For εP +εN < 1, the overhead is between 0 and 1 bit per key, where the value 1 is taken when
εN = 1

2 and εP → 0. We thus conclude that this structure is weakly optimal. Furthermore, this
is the best possible for any structure that fixes an 1− εN portion of keys to keep, so a strongly
optimal filter must randomize on which exact keys to store.

However, this baseline has unbounded multiplicative overhead when εP + εN ≈ 1: the lower
bound approaches zero at this limit, yet the selective insertion method still requires Ω(1− εN )
space per key, even when εP → 1− εN .

2.4 Related works

In this subsection, we focus mainly on space-optimal (one-sided) membership filters in the lit-
erature. Some filter designs choose to give up (even weak) space optimality for simplicity and
practical performance [17][18], but they are less relevant for our purpose. Additionally, we also
consider previously proposed space lower bound techniques for similar problems and compare
their techniques with ours.

2.4.1 Weakly optimal filters

Following the first weakly optimal filter by Carter et al. [10], many later designs choose to store
the fingerprints {f(x1)}ni=1 of the keys S = {xi}ni=1 exactly, often in a hash table-like structure.
Here, f : U → {0, 1}k is a hash function, often modeled as a random oracle. Suppose we have
perfect hash function h : U → [n] that is bijective on S, then we can simply use a hash table to
store f(xi) in the h(xi)th entry, which achieves FPR of 2−k with the best possible nk bits. The
benefit of the hash-table-like structure is the allowance for insertions (even deletions), which also
explains why they cannot be strongly optimal. Nevertheless, we can still analyze the inherent
limitation of the hash-based approach.

It’s been observed that a perfect hash function takes log nn

n! ≈ n log e bits to store [1]. In a
sense, this Ω(n) overhead is intrinsic to the hash-table-like structure, as the filters would store
a unique position for each xi in the table, in addition to the fingerprint value. In this view, the
various popular filter designs can be seen as different ways to resolve hash collisions. Variants
of quotient filter [3, 2, 28] uses linear probing and storing bits of meta information to resolve
collisions, while Cuckoo filter [16, 14, 8, 32] uses cuckoo hashing to resolve collisions. Other
proposed structures for storing (multi)set of fingerprints [10, 26, 5, 15, 4] also suffer from this
overhead due to the same reason of storing some notion of position.

2.4.2 The retrieval problem

In contrast, another class of filters based on the retrieval problem (see section 2.1) do not suffer
from the same overhead. Instead of hashing, they use algebraic methods to associate keys x ∈ S
with random values f(x), avoiding the need for storing extra information. Specifically, they
would learn a function from S to {0, 1}k that satisfies some properties. The cost is that S must
be a static set that never changes.

The association of filters with retrieval is proposed independently by Dietzfelbinger and
Pagh [12] and Porat [29]. Both works apply the same technique of solving linear equations over
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a finite field, essentially fitting a linear function from the vector valued representation of keys to
the scalar fingerprint values. Our optimal two-sided filter construction in section 4 is inspired by
this idea. Instead of a perfect linear function, we solve for the linear function that minimizes the
number of errors, a notoriously hard optimization problem related to decoding random linear
codes and learning parity with noise (LPN) problem [7].

2.4.3 Space lower bounds and related problems

The counting argument. The classical space lower bound of n log 1
ε is proven in 1978 by

Carter et al. [10]. They applied a counting argument, calculating how many sets of size n +
ε(u − n) (the set each filter actually recognizes) is needed, in order to cover all

(
u
n

)
possible

sets of size n. They then take u → ∞ while fixing n, to account for the universe-independent
property. While inspiring, this particular reasoning restricts to filters with a fixed FPR of ε,
whereas most filters can only achieve ε error in expectation3. In this case, each configuration
of the filter could potentially recognize sets of various sizes. Pagh and Rodler [27] applied the
same counting argument for their lower bound of lossy dictionaries.

Rate distortion argument. In our work, we incorporate the rate-distortion theory view-
point, which sees the filter as a means of compressing the membership information in U . This
method naturally takes into account the randomness both during construction and query, as
well as the fact that the error rates εP and εN are measured in expectation. This idea was first
introduced by Hurley and Waldvogel [19], who used rate-distortion theory to study approximate
membership structures in a fixed universe U , with i.i.d. membership (defined in section 3.1), and
a predetermined weight on the two types of error εP and εN . We adopt this view and modified
all three aspects, in order to obtain a lower bound explicitly in both εP and εN , which applies
to filters for a set of fixed size n, in a universe of unknown size.

Incremental filters. This is a more restrictive setting where the (one-sided) filters must
support insertion from empty to at most n keys, where n is known before-hand. For this
problem, Lovett and Porat [22] showed that such a filter must use C(ε)n log 1

ε bits to achieve an
FPR of ε for some C(ε) > 1. A corollary is that incremental filters (and dynamic filters which
supports deletion) can never hope to be strongly optimal in the generic membership filter sense.
The lower bound in this setting has yet to be exactly characterized, and there is a dynamic filter
that uses (1 + o(1))(n log 1

ε + n log2 e) bits for fixed ε [4].

2.4.4 Other data structures with two-sided errors

As mentioned, several Bloom-filter-based heuristics trade off FPR and FNR. Retouched Bloom
filters [13] reset bits randomly or selectively to reduce FPR (the random variant is weaker than
selective insertion). Generalized Bloom filters [21] set some hashed bits to 1 and others to 0 on
each insertion, yielding an FPR bound independent of the number of inserted keys. Compacted
Bloom filters [25] compress blocks of the bit vector to save space and reduce FPR, incurring
nonzero FNR. Autoscaling Bloom filters [20] keep per-bit counts and drop low-load bits to
optimize overall accuracy by trading FPR for FNR. We can view these heuristics as different
ways to trade-off FPR, FNR, and space, despite being far from optimal.

3In Bloom filter’s case, there could even be an extreme case where all bits are set to 1 and ε = 1, albeit
unlikely.
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3 Space Lower Bound for Two-Sided Filters

In this section, we prove the main lower-bound result Theorem 1. As before, all logarithms are
base 2. Let DKL(p∥q) be the binary KL-divergence of a Bern(p) distribution from a Bern(q)
distribution:

DKL(p∥q) = p log
p

q
+ (1− p) log

1− p

1− q
.

We first give a high-level overview of the proof, which follows from the observation that a
filter is a lossy code that encodes the membership information (whether x ∈ S or not) for each
x ∈ U . Prior work [19] considered the most natural setting for applying information-theoretic
tools, which is somewhat different from the filter setting:

1. Every x ∈ U has a probability p of being in S a priori.

2. Alice and Bob agree on a filter construction. Alice will use the filter to store S and send
the filter to Bob, who will query every element to decode all the membership information.

3. The error, or distortion, is measured by the percentage of membership information that
Bob incorrectly decodes.

To connect this problem to the filter setting we need three steps. In section 3.1, we give an
overview of the lossy compression for the i.i.d. setting, while proving a generalized version of the
rate-distortion theorem for two error metrics. Then in section 3.2, we reduce the setting where
S is a set of fixed size n to the case where S has i.i.d. membership with probability p = n

u , in
the sense that both settings share similar lower bounds. Finally, in section 3.3, we study the
rate-distortion function for sufficiently small p and obtain the desired lower bound.

3.1 Lossy compression of i.i.d. membership information

Consider the i.i.d. membership setting for the moment. Namely, each x ∈ U has a p = n
u

probability of being contained in S, independent from all other elements. Fixing p and taking
u → ∞, we can formulate the construction of a filter into the following lossy compression problem
(see, e.g., Chapter 10 of [11]):

1. Alice observes i.i.d. random variables X1, . . . , Xu ∼ Bern(p). In our context, Xi =
1 {xi ∈ S}.

2. Alice compresses the outcome {Xi}ui=1 using an R-bit (random) encoding function fu :
{0, 1}u → {0, 1}uR. Here R is the rate, the number of bits transmitted per element.

3. Bob uses (random) decoding function gu : {0, 1}uR → {0, 1}u to recover approximations
of the membership information {X̂i}ui=1, by taking

(X̂1, . . . , X̂u) = gu(fu(X1, . . . , Xu)).

The distortion is defined by a custom measure of distance between the (Xi, X̂i) pairs. In
contrast to the textbook setting, we use two (instead of one) distortion functions to measure the
false positive and false negative rates simultaneously:

dP (x, x̂) =

{
1

1−p if (x, x̂) = (0, 1)

0 otherwise.
dN (x, x̂) =

{
1
p if (x, x̂) = (1, 0)

0 otherwise.

Given the distortion measures, the rate-distortion functions are defined as follows:
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Definition 8. For any u ∈ N and p ∈ (0, 1), the rate-distortion function Rp,u(εP , εN ) is the
minimum per-element rate for codes with expected distortion at most (εP , εN ):

Rp,u(εP , εN ) := min

{
R : ∃R-bit functions fu, gu, such that E

[
1

u

u∑
i=1

dP (Xi, X̂i)

]
≤ FP ,

E

[
1

u

u∑
i=1

dN (Xi, X̂i)

]
≤ FN

}
.

Meanwhile, for each p, the information rate-distortion function R
(I)
p (εP , εN ) is:

R(I)
p (εP , εN ) := min{I(X; X̂) : X ∼ Bern(p),E[dP (X, X̂)] ≤ εP ,E[dN (X, X̂)] ≤ εN},

where the minimum is taken over all joint distributions of (X, X̂).

We prove the following two lemmas to characterize the rate-distortion functions in our setting;
proofs are in appendix A.1. The first explicitly characterizes R

(I)
p (εP , εN ), and the second

generalizes a central result in rate distortion theory.

Lemma 9. Let p ∈ (0, 1). If εP + εN ≥ 1, then R
(I)
p (εP , εN ) = 0. Otherwise, we have:

R(I)
p (εP , εN ) = H(p(1− εN ) + (1− p)εP )− pH(1− εN )− (1− p)H(εP ),

where H(p) is the binary entropy of a Bern(p) random variable.

Proof. Because X ∈ {0, 1}, we can characterize the conditional distribution X̂ | X with two
parameters: {

λ := P[X̂ = 1 | X = 0],

µ := P[X̂ = 1 | X = 1].

Let X̂(λ, µ) denote the random variable whose conditional distribution is as defined above.
Then, by standard results in information theory,

I(X; X̂(λ, µ)) = H(X̂(λ, µ))−H(X̂(λ, µ) | X)

= H(pµ+ (1− p)λ)− pH(µ)− (1− p)H(λ).

The last step is to take the minimum mutual information over all (λ, µ) satisfying the distortion
constraints, namely: {

E[dP (X, X̂(λ, µ))] = λ ≤ εP , and
E[dN (X, X̂(λ, µ))] = 1− µ ≤ εN .

Hence, we just need to solve the optimization problem:

min I(X; X̂(λ, µ)) = H(pµ+ (1− p)λ)− pH(µ)− (1− p)H(λ),

s.t.

{
0 ≤ λ ≤ εP ,

1− εN ≤ µ ≤ 1,

Taking derivatives shows that the objective function is always decreasing in λ and increasing in
µ, so we can just take λ = εP and µ = 1− εN .

Lemma 10. For all p ∈ (0, 1) and u ∈ N, we have:

Rp,u(εP , εN ) ≥ R(I)
p (εP , εN ).

Proof. See appendix A.1.
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3.2 From fixed key density to i.i.d. membership

When the element set S is generated in the i.i.d. fashion above, |S| follows a Binom(u, p)
distribution, which is close to a Poisson(n) distribution when n is fixed and u is large. However,
we can show that this difference is negligible if n → ∞ and p is fixed.

Lemma 11. For all εP , εN ∈ (0, 1) such that εP + εN < 1, and for all fixed rational p = n
u ∈

(0, 1), any approximate membership structure M (Definition 4) must satisfy:

lim inf
n→∞

1

n
LM(n, u, εP , εN ) ≥ 1

p
R(I)

p (εP , εN ).

Proof. Let n1, u1 be coprime integers such that n1
u1

= p, and define sequences {nj}, {uj} to be
nj = jn1 and uj = ju1, for all j ∈ N. Let Sj be the set of keys generated by the i.i.d. membership
process, where each element in universe [uj ] is independently included in Sj with probability p.
Clearly, |Sj | ∼ Binom(uj , p), with var(|Sj |/nj) = O(1/nj). By Chebyshev’s inequality, there is
a decreasing sequence of real numbers δj = Θ(n

−1/3
j ) such that for each j we have

P
[
|Sj − nj | ≥ δjnj

]
≤ var(|Sj |/nj)

δ2jn
2
j

= O(n
−1/3
j ) = O(δj).

Then, using a filter of appropriate size, we can construct a protocol for transmitting the
membership information of the universe [uj ]:

1. If |Sj − nj | ≤ δjnj , then we build an approximate membership structure of nj elements
with expected error rates εP and εN , using at most L(nj , uj , εP , εN ) bits. Since it’s likely
that |Sj | ̸= nj , we also use O(δjnj log uj) bits to explicitly specify some of the elements
we dropped, or the dummy elements we added.

2. If |Sj | > (1 + δj)nj , then we send a dummy message indicating X̂i = 1 for all i ∈ [uj ].

3. If |Sj | < (1− δj)nj , then we send a dummy message indicating X̂i = 0 for all i ∈ [uj ].

Note that cases 2 and 3 incur expected dP distortion ≤ 1
1−p and expected dN distortion

≤ 1
p respectively. For case 1, the expected distortions are at most εP and εN , since the explicit

encoding can only decrease the error rates. Thus, we can bound the expected distortions of this
protocol by E

[
1
uj

∑uj

i=1 dP (Xi, X̂i)
]
≤ (1− δj)εP +

δj
1−p =: aj ,

E
[

1
uj

∑uj

i=1 dN (Xi, X̂i)
]
≤ (1− δj)εN +

δj
p =: bj ,

where aj → εP and bj → εN as j → ∞. Now, this protocol uses at most L(nj , uj , εP , εN ) +
O(δjnj log uj) bits. By lemma 10, we have:

1

uj
L(nj , uj , εP , εN ) ≥ R(I)

p (aj , bj)−
1

uj
O(δjnj log uj), for all j ∈ N.

As j → ∞, we have δjnj log uj = o(uj), so the claim follows from the continuity of R(I)
p .

3.3 Putting it all together

Now we are ready to prove the space lower bound for approximate membership structures:
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Proof for theorem 1. It suffices to show how the expression for R(I)
p converges to DKL(1−εN∥εP )

as p → 0. Plugging in the expression for R(I)
p from lemma 9, the right hand side of the inequality

in lemma 11 equals:

1

p
R(I)

p (εP , εN ) =
1

p

[
H
(
p(1− εN ) + (1− p)εP

)
− pH(1− εN )− (1− p)H(εP )

]
= H(εP )−H(1− εN ) +

1

p

[
H
(
εP + p(1− εN − εP )

)
−H(εP )

]
We can approximate the last term by a second-order Taylor expansion:

= H(εP )−H(1− εN ) + (1− εN − εP )H
′(εP ) +

(1− εN − εP )
2H ′′(εP )

2
· p+O(p2).

Plugging in H(p) = −p log p − (1 − p) log(1 − p), H ′(p) = log 1−p
p , and H ′′(p) = 1

p + 1
1−p , we

have:

1

p
R(I)

p (εP , εN ) = −εP log εP − (1− εP ) log(1− εP ) + εN log εN

+ (1− εN ) log(1− εN ) + (1− εP − εN ) log
1− εP
εP

+
(1− εN − εP )

2

2εP (1− εP )
· p+O(p2)

= εN log
εN

1− εP
+ (1− εN ) log

1− εN
εP

+
(1− εN − εP )

2

2εP (1− εP )
· p+O(p2)

= DKL(1− εN∥εP ) +
(1− εN − εP )

2

2εP (1− εP )
· p+O(p2)

Finally, for two-sided filters, the lower bound follows from taking p → 0.

Proof for corollary 2. Assuming the appropriate random oracles on the universe, a filter can im-
plement any approximate membership structure of the same error rates. Therefore, by lemma 11,
we have:

lim inf
n→∞

L(n, εP , εN )

n
≥ lim

p→0,p∈Q

1

p
R(I)

p (εP , εN ),

which is just DKL(1− εN∥εP ).

4 A Strongly Optimal Filter Construction

In this section, we present a filter design that achieves the space lower bound of DKL(1 −
εN∥εP ) + o(1) per element. Our construction is inspired by Porat [29]. Although impractical,
this filter is conceptually simple and serves to complement the lower bound result.

Theorem 12. Assuming access to appropriate random oracle functions, when εP = 1
q for some

prime power q, there is a strongly optimal two-sided filter that achieves error rates (εP , εN ) with
probability at least 0.9.

Proof. Let n = |S| and let Fq be the finite field with q = 1/εP elements. Assume we have a
vector-valued random oracle function h : U → Fm

q . For each x ∈ U , and for each entry j ∈ [m],

11



h(x)j is i.i.d. uniform on Fq. WLOG, let S = {x1, . . . , xn}. We consider the following linear
system of equations, where y is not the all-zero vector:

⟨h(x1), y⟩ = 0,
...
⟨h(xn), y⟩ = 0.

where ⟨u, v⟩ denotes
∑m

j=1 ujvj in Fq, and y is an unknown vector in Fm
q . Define m to be

the smallest number such that the non-zero solution y satisfying the most equations will, with
probability at least 0.9, satisfy at least a 1− εN fraction of the equations.

We use this system to construct a strongly optimal filter F . We first describe the initialization
and query process, and then prove its optimality.

Initialization. On input εP , εN , and key set S = {x1, . . . , xn}, F stores the binary encoding
of an optimal solution y to the above system of equations. This takes m log q +O(1) bits. The
construction succeeds if the stored y satisfies at least a 1− εN fraction of the equations.

Query. On query x ∈ U , F queries the oracle to get h(x) and outputs 1 iff ⟨h(x), y⟩ = 0. The
probability that F(x) = 1 is exactly 1

q for non-keys, and for a uniform random query over the
keys S, F(x) = 0 with probability at least 1− εN .

Analysis. The filter satisfies the target FNR of εN over the randomness of the initialization
by design. For FPR, we have Px∼Unif(U\S)[F(x) = 1] = 1

q by the following lemma:

Lemma 13. For any fixed y1, . . . , ym ∈ Fq not all zero, and for i.i.d. h1, . . . , hm uniform on
Fq, we have:

P

 m∑
j=1

yjhj = 0

 =
1

q
.

Proof. WLOG suppose y1 ̸= 0. Then, for any c ∈ Fq, we have:

P

 m∑
j=1

yjhj = c

 = P

h1 = y−1
1

c−
m∑
j=2

yjhj

 =
1

q
.

We now bound its space usage by showing that, for any fixed δ, for sufficiently large n, it
always suffices to take m to be:

m =

⌈
n

(
DKL(1− εN∥εP )

log q
+ δ

)⌉
to ensure that the filter is strongly optimal with FNR at most εN .

We will use the second moment method to show that, P[Z ≥ 1] = 1 − o(1) as n → ∞. Let
Y be the set of all possible non-zero values of y with |Y | = qm − 1, and let Z be the number
of solutions y satisfying the FNR requirement. Let Xy be the indicator that a fixed non-zero y
satisfies (1− εN )n equations. Then, we have:

E[Z] =
∑
y∈Y

E[Xy]

=
∑
y∈Y

P[⟨h(x1), y⟩ = 0, . . . , ⟨h(xn), y⟩ = 0]

= (qm − 1) · 2−n·DKL(1−εN∥εP )−o(n),

12



where the last step is by Chernoff-Hoeffding theorem. We denote this probability P[Xy = 1] by
pn.

To bound E[Z2], write

E[Z2] =
∑
y∈Y

E[Xy] +
∑
y ̸=y′

E[XyXy′ ].

Fix distinct y, y′. For each i ∈ [n], the pair of events {⟨h(xi), y⟩ = 0} and {⟨h(xi), y′⟩ = 0}
are independent whenever y and y′ are linearly independent over Fq; indeed, the mapping from
h(xi) to

(
⟨h(xi), y⟩, ⟨h(xi), y′⟩

)
is a linear surjection from Fm

q to F2
q . The probability of each pair

of values is just 1
q2

, so E[XyXy′ ] =
1
q2

.
If instead y′ is a non-zero scalar multiple of y (there are exactly q − 2 such y′ for each fixed

y when excluding y itself), then ⟨h(xi), y′⟩ = 0 iff ⟨h(xi), y⟩ = 0 for all i, so Xy = Xy′ and
E[XyXy′ ] = E[Xy] = pn. Hence the second moment equals:

E[Z2] =
∑
y∈Y

E[Xy] +
∑
y ̸=y′

y′∈⟨y⟩\{y}

E[XyXy′ ] +
∑
y ̸=y′

y,y′ lin. indep.

E[XyXy′ ]

≤ (qm − 1) pn + (qm − 1)(q − 2) pn + (qm − 1)(qm − q) p2n

= (qm − 1)
(
(q − 1) pn + (qm − q) p2n

)
.

By Paley–Zygmund inequality,

P[Z ≥ 1] ≥ E[Z]2

E[Z2]

≥ (qm − 1)2p2n

(qm − 1)
(
(q − 1) pn + (qm − q) p2n

)
=

(qm − 1) pn
(q − 1) + (qm − q) pn

.

With our choice of m, we have qmpn = 2δn−o(n) and all other terms are negligible. Hence this
probability tends to 1 as n → ∞.
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A Appendix

A.1 Proof for lemma 10

Lemma 14 (Same as lemma 10). For all p ∈ (0, 1) and u ∈ N, we have

Rp,u(εP , εN ) ≥ R(I)
p (εP , εN ).

Before the proof itself, we first show the useful fact that Rp,u(εP , εN ) is jointly convex in
both inputs.

Lemma 15. For all u ∈ N, p ∈ (0, 1), inputs εP , ε
′
P , εN , ε′N ∈ [0, 1], and λ ∈ (0, 1), we have:

Rp,u(λεP + (1− λ)ε′P , λεN + (1− λ)ε′N ) ≤ λRp,u(εP , εN ) + (1− λ)Rp,u(ε
′
P , ε

′
N )

Proof. Fixing X, let X̂ and X̂ ′ be random variables achieving the optimal rates:{
I(X; X̂) = Rp,u(εP , εN ),

I(X; X̂ ′) = Rp,u(ε
′
P , ε

′
N ).

Now consider random variable X̂λ defined by:

X̂λ =

{
X̂ with probability λ,

X̂ ′ with probability 1− λ,

independently from X, X̂, X̂ ′. From linearity of expectation, we have:{
E[dP (X, X̂λ)] ≤ λεP + (1− λ)ε′P ,

E[dN (X, X̂λ)] ≤ λεN + (1− λ)ε′N .

Since I(X; X̂) is convex in the conditional distribution X̂ | X, the desired statement follows
from:

Rp,u(λεP + (1− λ)ε′P , λεN + (1− λ)ε′N ) ≤ I(X; X̂λ)

≤ λI(X; X̂) + (1− λ)I(X; X̂ ′)

= λRp,u(εP , εN ) + (1− λ)Rp,u(ε
′
P , ε

′
N ).

Now we are ready for the proof. We use the following shorthand for the tuples of random
variables: Xu = (X1, . . . , Xu) and X̂u = (X̂1, . . . , X̂u).
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Proof for Lemma 10. For all R such that there exists pair of (random) functions f : {0, 1}u →
{0, 1}uR and g : {0, 1}uR → {0, 1}u satisfying distortion requirements εP , εN , we must have:

uR ≥ H(f(Xu))

≥ I(Xu; f(Xu))

≥ I(Xu; X̂u)

= H(Xu)−H(Xu | X̂u)

=
u∑

i=1

H(Xi)−
u∑

i=1

H(Xi | X̂u, X1, . . . , Xi−1)

≥
u∑

i=1

H(Xi)−
u∑

i=1

H(Xi | X̂i)

=
u∑

i=1

I(Xi; X̂i)

≥
u∑

i=1

Rp,u(E[dP (Xi, X̂i)],E[dN (Xi, X̂i)])

≥ uRu
p

(
E

[
1

u

u∑
i

dP (Xi, X̂i)

]
,E

[
1

u

u∑
i

dN (Xi, X̂i)

])
by convexity,

≤ uRp,u (εP , εN ) .
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